Graphene Materials Fundamentals and Emerging Applications

Graphene Materials Fundamentals and Emerging Applications
اسم المؤلف
Ashutosh Tiwari and Mikael Syvajarvi
التاريخ
17 يناير 2019
المشاهدات
التقييم
Loading...

Graphene Materials Fundamentals and Emerging Applications
من سلسلة علم المواد المتقدمة
Advanced Material Series
Edited by
Ashutosh Tiwari and Mikael Syvajarvi
Contents
Preface xv
Foreword by Rosita Yakimova xix
Part 1: Fundamentals of Graphene and Graphene-Based
Nanocomposites 1
1 Graphene and Related Two-Dimensional Materials 3
Manas Mandal, Anirban Maitra, Tanya Das and
Chapal Kumar Das
1.1 Introduction 4
1.2 Preparation of Graphene Oxide by Modifed
Hummer’s Method 6
1.3 Dispersion of Graphene Oxide in Organic Solvents 6
1.4 Paper-like Graphene Oxide 7
1.5 Tin Films of Graphene Oxide and Graphene 7
1.6 Nanocomposites of Graphene Oxide 8
1.7 Graphene-Based Materials 9
1.8 Graphene-like 2D Materials 10
1.8.1 Tungsten Sulfde 10
1.8.1.1 Di?erent Methods for WS
2 Preparation 11
1.8.1.2 Properties of WS2 12
1.8.1.3 WS
2 and Reduced Graphene Oxide
Nanocomposites 13
1.8.2 Molybdenum Sulfde 14
1.8.3 Tin Sulfde 15
1.8.4 Tin Selenide 17
1.8.5 Manganese Dioxide 17
1.8.6 Nickel Oxide 18
1.8.7 Boron Nitride 19
1.9 Conclusion 20
References 20vi Contents
2 Surface Functionalization of Graphene 25
Mojtaba Bagherzadeh and Anahita Farahbakhsh
2.1 Introduction 25
2.2 Noncovalent Functionalization of Graphene 27
2.3 Covalent Functionalization of Graphene 34
2.3.1 Nucleophilic Substitution Reaction 34
2.3.2 Electrophilic Substitution Reaction 41
2.3.3 Condensation Reaction 42
2.3.4 Addition Reaction 50
2.4 Graphene–Nanoparticles 51
2.4.1 Metals NPs: Au, Pd, Pt, Ag 54
2.4.2 Metal oxide NPs: ZnO, SnO
2, TiO2, SiO2,
RuO
2, Mn3O4, Co3O4, and Fe3O4 54
2.4.3 Semiconducting NPs: CdSe, CdS, ZnS, CdTe and
Graphene QD 56
2.5 Conclusion 58
References 58
3 Architecture and Applications of Functional
Tree-dimensional Graphene Networks 67
Ramendra Sundar Dey and Qijin Chi
3.1 Introduction 68
3.1.1 Synthesis of 3D Porous Graphene-Based Materials 69
3.1.1.1 Self-assembly Approach 69
3.1.1.2 Template-assisted Synthesis 70
3.1.1.3 Direct Deposition 71
3.1.1.4 Covalent Linkage 72
3.1.2 Overview of 3DG Structures 73
3.1.2.1 3DG Framework 73
3.1.2.2 3DG Sphere or Ball 74
3.1.2.3 3DG Film 75
3.1.2.4 3DG Fibre 76
3.2 Applications 77
3.2.1 Supercapacitor 77
3.2.1.1 Battery 88
3.2.2 Fuel Cells 91
3.2.3 Sensors 92
3.2.4 Other Applications 93
3.3 Summary, Conclusion, Outlook 93
Abbreviations 94
References 94Contents vii
4 Covalent Graphene-Polymer Nanocomposites 101
Horacio J. Salavagione
4.1 Introduction 101
4.2 Properties of Graphene for Polymer Reinforcement 102
4.3 Graphene and Graphene-like Materials 103
4.4 Methods of Production 104
4.5 Chemistry of Graphene 108
4.6 Conventional Graphene Based Polymer Nanocomposites 109
4.7 Covalent Graphene-polymer Nanocomposites 112
4.8 Grafing-From Approaches 114
4.8.1 Living Radical Polymerizations 115
4.8.2 Other Approaches 123
4.9 Grafing-to Approaches 126
4.9.1 Graphene Oxide-based Chemistry 127
4.9.2 Crosslinking Reactions 130
4.9.3 Click Chemistry 131
4.9.4 Other Grafing-to Approaches 137
4.10 Conclusions 140
References 141
Part 2: Emerging Applications of Graphene in
Energy, Health, Environment and Sensors 151
5 Magnesium Matrix Composites Reinforced with Graphene
Nanoplatelets 153
Muhammad Rashad, Fusheng Pan and Muhammad Asif
5.1 Introduction 154
5.1.1 Magnesium 154
5.1.2 Metal Matrix Composites 154
5.1.3 Graphene Nanoplatelets (GNPs) 155
5.2 E?ect of Graphene Nanoplatelets on Mechanical
Properties of Pure Magnesium 156
5.2.1 Introduction 156
5.2.2 Synthesis 157
5.2.3 Microstructural Characterization 157
5.2.4 Crystallographic Texture Measurements 158
5.2.5 Mechanical Characterization 160
5.2.6 Conclusions 163viii Contents
5.3 Synergetic E?ect of Graphene Nanoplatelets (GNPs)
and Multi-walled Carbon Nanotube (MW-CNTs) on
Mechanical Properties of Pure Magnesium 164
5.3.1 Introduction 164
5.3.2 Synthesis 165
5.3.3 Microstructure Characterization 166
5.3.3.1 Raw Materials 166
5.3.3.2 Microstructure of Composites 166
5.3.4 Mechanical Characterization 169
5.3.5 Conclusions 174
5.4 E?ect of Graphene Nanoplatelets (GNPs) Addition
on Strength and Ductility of Magnesium-Titanium Alloys 175
5.4.1 Introduction 175
5.4.2 Synthesis 176
5.4.2.1 Primary Processing 176
5.4.2.2 Secondary Processing 176
5.4.3 Microstructure Characterization 176
5.4.4 Mechanical Characterization 178
5.4.5 Conclusions 179
5.5 E?ect of Graphene Nanoplatelets on Tensile
Properties of Mg–1%Al–1%Sn Alloy 180
5.5.1 Introduction 180
5.5.2 Synthesis 180
5.5.3 Microstructure Characterization 180
5.5.4 Mechanical Characterization 181
5.5.5 Conclusions 184
Acknowledgments 184
References 185
6 Graphene and Its Derivatives for Energy Storage 191
Malgorzata Aleksandrzak and Ewa Mijowska
6.1 Introduction 191
6.2 Graphene in Lithium Batteries 192
6.2.1 Lithium Ion Batteries 193
6.2.2 Lithium-Oxygen Batteries 201
6.2.3 Lithium-Sulfur Batteries 206
6.3 Graphene in Supercapacitors 212
6.4 Summary 218
References 218Contents ix
7 Graphene-Polypyrrole Nanocomposite: An Ideal Electroactive
Material for High Performance Supercapacitors 225
Alagiri Mani, Khosro Zangene Kamali, Alagarsamy
Pandikumar, Lim Yee Seng, Lim Hong Ngee
and Huang Nay Ming
7.1 Introduction 226
7.2 Renewable Energy Sources 226
7.3 Importance of Energy Storage 227
7.4 Supercapacitors 228
7.5 Principle and Operation of Supercapacitiors 228
7.6 Electrode Materials for Supercapacitors 230
7.7 Graphene-based Supercapacitors and Teir Limitations 231
7.8 Graphene-Polymer-Composite-based Supercapacitors 232
7.9 Graphene-Polypyrrole Nanocomposite-based
Supercapacitiors 233
7.10 Fabrication of Graphene-Polypyrrole Nanocomposite
for Supercapacitiors 233
7.11 Performance of Graphene-Polypyrrole
Nanocomposite-based Supercapacitors 239
7.12 Summary and Outlooks 240
References 243
8 Hydrophobic ZnO Anchored Graphene Nanocomposite
Based Bulk Hetro-junction Solar Cells to Improve Short
Circuit Current Density 245
Rajni Sharma, Firoz Alam, A.K. Sharma, V. Dutta and
S.K. Dhawan
8.1 Introduction 246
8.2 Economic Expectations of OPV 248
8.3 Device Architecture 253
8.3.1 Bulk-heterojunction Structure 252
8.4 Operational Principles 253
8.4.1 Series and Shunt Resistance 255
8.4.2 Standard Test Conditions 256
8.5 Experimental procedure for synthesis of
hydrophobic nanomaterials 258
8.5.1 Zinc Oxide Nanoparticles 258
8.5.2 ZnO Nanoparticle Decorated Graphene ([email protected])
Nanocomposite 259x Contents
8.6 Characterization of Synthesized ZnO Nanoparticles and
ZnO Decorated Graphene ([email protected]) Nanocomposite 259
8.6.1 Structural Analysis 259
8.6.2 Morphological Analysis 260
8.6.3 Optical Analysis 262
8.6.3.1 UV-Vis Absorption Spectroscopy 262
8.6.3.2 Photoluminescence Spectroscopy 263
8.6.4 FTIR (Fourier Transform Infrared) Spectroscopy 263
8.6.5 Raman Spectroscopy 265
8.6.6 Hydrophobicity Measurement 266
8.7 Hybrid Solar Cell Fabrication and Characterization 267
8.7.1 Device Fabrication 267
8.7.2 J-V (Current density-Voltage) Characteristics 267
8.8. Conclusion 272
Acknowledgement 273
References 273
9 Tree-dimensional Graphene Bimetallic Nanocatalysts
Foam for Energy Storage and Biosensing 277
Chih-Chien Kung, Liming Dai, Xiong Yu and Chung-Chiun Liu
9.1 Background and Introduction 278
9.1.1 Biosensors 278
9.1.2 Fuel Cells 280
9.1.3 Bimetallic Nanocatalysts 282
9.1.4 Carbon Supported Materials 282
9.1.5 Rotating Disk Electrode 284
9.1.6 Cyclic Voltammetry and Chronoamperometric
Techniques 286
9.1.7 Methods of Estimating Limit of Detection (LOD) 288
9.1.8 CO Stripping for the Estimation of the Catalyst
Surface Area 288
9.1.9 Brunauer, Emmett and Teller (BET) Measurement 288
9.1.10 Motivations of the Study 289
9.2 Preparation and Characterization of Tree Dimensional
Graphene Foam Supported Platinum-Ruthenium
Bimetallic Nanocatalysts for Hydrogen Peroxide Based
Electrochemical Biosensors 290
9.2.1 Introduction 290
9.2.2 Experimental 291
9.2.2.1 Materials 291
9.2.2.2 Growth of the 3D Graphene Foam 291Contents xi
9.2.2.3 Synthesis and Modifcation of PtRu
Nanoparticle Catalyst 292
9.2.2.4 Characterization of PtRu Nanocatalysts
with Di?erent Carbon Supported Materials 293
9.2.2.5 Electrochemical measurements 293
9.2.3 Results and Discussion 294
9.2.3.1 Physicochemical Characterization
of PtRu Nanocatalysts with Di?erent
Carbon Supported Materials 294
9.2.3.2 Electrochemical Characterization and
Performance 298
9.2.3.3 Electrochemical Active Surface Area
Measurement 300
9.2.3.4 Amperometric Measurement of H2O2 301
9.2.3.5 Interference Tests 303
9.2.3.6 Stability and Durability of the PtRu/3D
GF Nanocatalyst 304
9.2.4 Conclusion for H
2O2 Detection in Biosensing 307
9.3 Tree dimensional graphene Foam Supported Platinum–
Ruthenium Bimetallic Nanocatalysts for Direct Methanol
and Direct Ethanol Fuel Cell Applications 307
9.3.1 Introduction 308
9.3.2 Experimental 309
9.3.2.1 Materials 309
9.3.2.2 Growth of the 3D Graphene Foam 309
9.3.2.3 Synthesis and Modifcation of PtRu
Nanoparticle Catalyst 309
9.3.2.4 Characterization of PtRu Nanocatalysts 310
9.3.2.5 Electrochemical Measurements 310
9.3.3 Results and Discussion 311
9.3.3.1 Physicochemical Characterization
of PtRu Nanocatalysts with Di?erent
Carbon Supported Materials 311
9.3.3.2 Surface Area Measurements 311
9.3.3.3 Methanol and Ethanol Oxidation
Measurements 312
9.3.4 Conclusion for Methanol and Ethanol Oxidation
Reactions in Energy Storage 319
9.4 Conclusions 319
Acknowledgments 320
References 320xii Contents
10 Electrochemical Sensing and Biosensing Platforms Using
Graphene and Graphene-based Nanocomposites 325
Sandeep Kumar Vashist and John H.T. Luong
10.1 Introduction 326
10.2 Fabrication of Graphene and Its Derivatives 328
10.2.1 Exfoliation 328
10.2.2 Chemical Vapor Deposition (CVD) 330
10.2.3 Miscellaneous Techniques 331
10.3 Properties of Graphene and Its Derivatives 332
10.4 Electrochemistry of Graphene 333
10.5 Graphene and Graphene-Based Nanocomposites
as Electrode Materials 335
10.6 Electrochemical Sensing/Biosensing 336
10.6.1 Glucose 336
10.6.2 DNA/Proteins/Cells 341
10.6.3 Other Small Electroactive Analytes 344
10.7 Challenges and Future Trends 347
References 351
11 Applications of Graphene Electrodes in Health and
Environmental Monitoring 361
Georgia-Paraskevi Nikoleli, Susana Campuzano,
José M. Pingarr?n and Dimitrios P. Nikolelis
11.1 Biosensors Based on Nanostructured Materials 362
11.2 Graphene Nanomaterials Used in Electrochemical (bio)
Sensors Fabrication 363
11.3 Miniaturized Graphene Nanostructured Biosensors for
Health Monitoring 365
11.3.1 Graphene in Bio-feld-e?ect Transistors 365
11.3.2 Graphene Impedimetric Biosensors 367
11.3.3 Graphene in Electrochemical Biosensors 368
11.3.3.1 Enzymatic Biosensors 369
11.3.3.2 Immunosensors 373
11.3.3.3 DNA Sensors 375
11.4 Miniaturized Graphene Nanostructured Biosensors for
Environmental Monitoring 377
11.4.1 Detection of Toxic Gases in Air 377
11.4.2 Detection of Heavy Metal Ions 379Contents xiii
11.4.3 Detection of Organic Pollutants 381
11.5 Conclusions and Future Prospects 384
Acknowledgements 386
References 386
Index
كلمة سر فك الضغط : books-world.net
The Unzip Password : books-world.net

تحميل

يجب عليك التسجيل في الموقع لكي تتمكن من التحميل
تسجيل | تسجيل الدخول

التعليقات

اترك تعليقاً